# Fundamental interaction

In physics, the

**fundamental interactions**, also known as**fundamental forces**, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the strong, and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions. Some scientists{{cite book | last1 = Fackler | first1 = Orrin | last2 = Tran | first2 = J. Thanh Van | title = 5th Force Neutrino Physics | publisher = Atlantica Séguier Frontières | date = 1988 | location = | pages = | language = | url = https://books.google.com/books?id=Ke32COxghksC&pg=PR7&dq=%22fifth+force%22f=false | doi = | id = | isbn = 2863320548 }}{{cite web | last = Weisstein | first = Eric W. | title = Fifth Force | work = World of Science | publisher = Wolfram Research | date = 2007 | url = http://scienceworld.wolfram.com/physics/FifthForce.html | format = | doi = | accessdate = September 14, 2017}}{{cite book | last1 = Franklin | first1 = Allan | last2 = Fischbach | first2 = Ephraim | title = The Rise and Fall of the Fifth Force: Discovery, Pursuit, and Justification in Modern Physics, 2nd Ed. | publisher = Springer | date = 2016 | location = | pages = | language = | url = https://books.google.com/books?id=7giyCwAAQBAJ&pg=PA146&dq=%22fifth+force%22 | doi = | id = | isbn = 3319284126 }} speculate that a fifth force might exist but if so, it is not widely accepted nor proven. Each of the known fundamental interactions can be described mathematically as a*field*. The gravitational force is attributed to the curvature of spacetime, described by Einstein's general theory of relativity. The other three are discrete quantum fields, and their interactions are mediated by elementary particles described by the Standard Model of particle physics. Within the Standard Model, the strong interaction is carried by a particle called the gluon, and is responsible for the binding of quarks together to form hadrons, such as protons and neutrons. As a residual effect, it creates the nuclear force that binds the latter particles to form atomic nuclei. The weak interaction is carried by particles called W and Z bosons, and also acts on the nucleus of atoms, mediating radioactive decay. The electromagnetic force, carried by the photon, creates electric and magnetic fields, which are responsible for chemical bonding and electromagnetic waves, including visible light, and forms the basis for electrical technology. Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over the largest distances (on the scale of planets and galaxies), gravity tends to be the dominant force. All four fundamental forces are believed to be related, and to unite into a single force at high energies on a minuscule scale, the Planck scale, but particle accelerators cannot produce the enormous energies required to experimentally probe this. Efforts to devise a common theoretical framework that would explain the relation between the forces are perhaps the greatest goal of theoretical physicists today. The weak and electromagnetic forces have already been unified with the electroweak theory of Sheldon Glashow, Abdus Salam, and Steven Weinberg for which they received the 1979 Nobel Prize in physics. Progress is currently being made in uniting the electroweak and strong fields within a Grand Unified Theory (GUT). A bigger challenge is to find a way to quantize the gravitational field, resulting in a theory of quantum gravity (QG) which would unite gravity in a common theoretical framework with the other three forces. Some theories, notably string theory, seek both QG and GUT within one framework, unifying all four fundamental interactions along with mass generation within a theory of everything (ToE).## History

### Classical theory

In his 1687 theory, Isaac Newton postulated space as an infinite and unalterable physical structure existing before, within, and around all objects while their states and relations unfold at a constant pace everywhere, thus absolute space and time. Inferring that all objects bearing mass approach at a constant rate, but collide by impact proportional to their masses, Newton inferred that matter exhibits an attractive force. His law of universal gravitation mathematically stated it to span the entire universe instantly (despite absolute time), or, if not actually a force, to be instant interaction among all objects (despite absolute space.) As conventionally interpreted, Newton's theory of motion modelled a*central force*without a communicating medium.Newton's absolute space was a medium, but not one transmitting gravitation. Thus Newton's theory violated the first principle of mechanical philosophy, as stated by Descartes,*No action at a distance*. Conversely, during the 1820s, when explaining magnetism, Michael Faraday inferred a*field*filling space and transmitting that force. Faraday conjectured that ultimately, all forces unified into one. In the early 1870s, James Clerk Maxwell unified electricity and magnetism as effects of an electromagnetic field whose third consequence was light, travelling at constant speed in a vacuum. The electromagnetic field theory contradicted predictions of Newton's theory of motion, unless physical states of the luminiferous aether—presumed to fill all space whether within matter or in a vacuum and to manifest the electromagnetic field—aligned all phenomena and thereby held valid the Newtonian principle relativity or invariance.### The Standard Model

The Standard Model of particle physics was developed throughout the latter half of the 20th century. In the Standard Model, the electromagnetic, strong, and weak interactions associate with elementary particles, whose behaviours are modelled in quantum mechanics (QM). For predictive success with QM's probabilistic outcomes, particle physics conventionally models QM events across a field set to special relativity, altogether relativistic quantum field theory (QFT).Meinard Kuhlmann, "Physicists debate whether the world is made of particles or fields—or something else entirely",*Scientific American*, 24 Jul 2013. Force particles, called gauge bosons—*force carriers*or*messenger particles*of underlying fields—interact with matter particles, called fermions. Everyday matter is atoms, composed of three fermion types: up-quarks and down-quarks constituting, as well as electrons orbiting, the atom's nucleus. Atoms interact, form molecules, and manifest further properties through electromagnetic interactions among their electrons absorbing and emitting photons, the electromagnetic field's force carrier, which if unimpeded traverse potentially infinite distance. Electromagnetism's QFT is quantum electrodynamics (QED). The electromagnetic interaction was modelled with the weak interaction, whose force carriers are W and Z bosons, traversing the minuscule distance, in electroweak theory (EWT). Electroweak interaction would operate at such high temperatures as soon after the presumed Big Bang, but, as the early universe cooled, split into electromagnetic and weak interactions. The strong interaction, whose force carrier is the gluon, traversing minuscule distance among quarks, is modeled in quantum chromodynamics (QCD). EWT, QCD, and the Higgs mechanism, whereby the Higgs field manifests Higgs bosons that interact with some quantum particles and thereby endow those particles with mass comprise particle physics' Standard Model (SM). Predictions are usually made using calculational approximation methods, although such perturbation theory is inadequate to model some experimental observations (for instance bound states and solitons.) Still, physicists widely accept the Standard Model as science's most experimentally confirmed theory. Beyond the Standard Model, some theorists work to unite the electroweak and strong interactions within a Grand Unified Theory (GUT). Some attempts at GUTs hypothesize "shadow" particles, such that every known matter particle associates with an undiscovered force particle, and vice versa, altogether supersymmetry (SUSY). Other theorists seek to quantize the gravitational field by the modelling behaviour of its hypothetical force carrier, the graviton and achieve quantum gravity (QG). One approach to QG is loop quantum gravity (LQG). Still other theorists seek both QG and GUT within one framework, reducing all four fundamental interactions to a Theory of Everything (ToE). The most prevalent aim at a ToE is string theory, although to model matter particles, it added SUSY to force particles—and so, strictly speaking, became superstring theory. Multiple, seemingly disparate superstring theories were unified on a backbone, M-theory. Theories beyond the Standard Model remain highly speculative, lacking great experimental support.## Overview of the fundamental interactions

In the conceptual model of fundamental interactions, matter consists of fermions, which carry properties called charges and spin ± (intrinsic angular momentum ±, where ħ is the reduced Planck constant). They attract or repel each other by exchanging bosons. The interaction of any pair of fermions in perturbation theory can then be modelled thus: Two fermions go in →*interaction*by boson exchange → Two changed fermions go out. The exchange of bosons always carries energy and momentum between the fermions, thereby changing their speed and direction. The exchange may also transport a charge between the fermions, changing the charges of the fermions in the process (e.g., turn them from one type of fermion to another). Since bosons carry one unit of angular momentum, the fermion's spin direction will flip from + to − (or vice versa) during such an exchange (in units of the reduced Planck's constant). Because an interaction results in fermions attracting and repelling each other, an older term for "interaction" is force. According to the present understanding, there are four fundamental interactions or forces: gravitation, electromagnetism, the weak interaction, and the strong interaction. Their magnitude and behaviour vary greatly, as described in the table below. Modern physics attempts to explain every observed physical phenomenon by these fundamental interactions. Moreover, reducing the number of different interaction types is seen as desirable. Two cases in point are the unification of:- Electric and magnetic force into electromagnetism;
- The electromagnetic interaction and the weak interaction into the electroweak interaction; see below.

## The interactions

### Gravity

*Gravitation*is by far the weakest of the four interactions at the atomic scale, where electromagnetic interactions dominate. But the idea that the weakness of gravity can easily be demonstrated by suspending a pin using a simple magnet (such as a refrigerator magnet) is fundamentally flawed. The only reason the magnet is able to hold the pin against the gravitational pull of the entire Earth is due to its relative proximity. There is clearly a short distance of separation between magnet and pin where a breaking point is reached, and due to the large mass of Earth this distance is disappointingly small. Thus gravitation is very important for macroscopic objects and over macroscopic distances for the following reasons. Gravitation:- Is the only interaction that acts on all particles having mass, energy and/or momentum
- Has an infinite range, like electromagnetism but unlike strong and weak interaction
- Cannot be absorbed, transformed, or shielded against
- Always attracts and never repels (see function of geodesic equation in general relativity)

### Electroweak interaction

Electromagnetism and weak interaction appear to be very different at everyday low energies. They can be modelled using two different theories. However, above unification energy, on the order of 100 GeV, they would merge into a single electroweak force. Electroweak theory is very important for modern cosmology, particularly on how the universe evolved. This is because shortly after the Big Bang, the temperature was approximately above 1015 K. Electromagnetic force and weak force were merged into a combined electroweak force. For contributions to the unification of the weak and electromagnetic interaction between elementary particles, Abdus Salam, Sheldon Glashow and Steven Weinberg were awarded the Nobel Prize in Physics in 1979. p.84#### Electromagnetism

Electromagnetism is the force that acts between electrically charged particles. This phenomenon includes the electrostatic force acting between charged particles at rest, and the combined effect of electric and magnetic forces acting between charged particles moving relative to each other. Electromagnetism is infinite-ranged like gravity, but vastly stronger, and therefore describes a number of macroscopic phenomena of everyday experience such as friction, rainbows, lightning, and all human-made devices using electric current, such as television, lasers, and computers. Electromagnetism fundamentally determines all macroscopic, and many atomic levels, properties of the chemical elements, including all chemical bonding. In a four kilogram (~1 gallon) jug of water there are 4000 \ \mbox{g}\,H_2 O \cdot \frac{1 \ \mbox{mol}\,H_2 O}{18 \ \mbox{g}\,H_2 O} \cdot \frac{10 \ \mbox{mol}\,e^{-}}{1 \ \mbox{mol}\,H_2 O} \cdot \frac{96,000 \ \mbox{C}\,}{1 \ \mbox{mol}\,e^{-}} = 2.1 \times 10^{8} C \ \, \ of total electron charge. Thus, if we place two such jugs a meter apart, the electrons in one of the jugs repel those in the other jug with a force of {1 \over 4\pi\varepsilon_0}\frac{(2.1 \times 10^{8} C)^2}{(1 m)^2} = 4.1 \times 10^{26} N. This is larger than the planet Earth would weigh if weighed on another Earth. The atomic nuclei in one jug also repel those in the other with the same force. However, these repulsive forces are canceled by the attraction of the electrons in jug A with the nuclei in jug B and the attraction of the nuclei in jug A with the electrons in jug B, resulting in no net force. Electromagnetic forces are tremendously stronger than gravity but cancel out so that for large bodies gravity dominates. Electrical and magnetic phenomena have been observed since ancient times, but it was only in the 19th century that it was discovered that electricity and magnetism are two aspects of the same fundamental interaction. By 1864, Maxwell's equations had rigorously quantified this unified interaction. Maxwell's theory, restated using vector calculus, is the classical theory of electromagnetism, suitable for most technological purposes. The constant speed of light in a vacuum (customarily described with the letter "c") can be derived from Maxwell's equations, which are consistent with the theory of special relativity. Einstein's 1905 theory of special relativity, however, which flows from the observation that the speed of light is constant no matter how fast the observer is moving, showed that the theoretical result implied by Maxwell's equations has profound implications far beyond electromagnetism on the very nature of time and space. In another work that departed from classical electro-magnetism, Einstein also explained the photoelectric effect by hypothesizing that light was transmitted in quanta, which we now call photons. Starting around 1927, Paul Dirac combined quantum mechanics with the relativistic theory of electromagnetism. Further work in the 1940s, by Richard Feynman, Freeman Dyson, Julian Schwinger, and Sin-Itiro Tomonaga, completed this theory, which is now called quantum electrodynamics, the revised theory of electromagnetism. Quantum electrodynamics and quantum mechanics provide a theoretical basis for electromagnetic behavior such as quantum tunneling, in which a certain percentage of electrically charged particles move in ways that would be impossible under the classical electromagnetic theory, that is necessary for everyday electronic devices such as transistors to function.#### Weak interaction

The*weak interaction*or*weak nuclear force*is responsible for some nuclear phenomena such as beta decay. Electromagnetism and the weak force are now understood to be two aspects of a unified electroweak interaction — this discovery was the first step toward the unified theory known as the Standard Model. In the theory of the electroweak interaction, the carriers of the weak force are the massive gauge bosons called the W and Z bosons. The weak interaction is the only known interaction which does not conserve parity; it is left-right asymmetric. The weak interaction even violates CP symmetry but does conserve CPT.### Strong interaction

The*strong interaction*, or*strong nuclear force*, is the most complicated interaction, mainly because of the way it varies with distance. At distances greater than 10 femtometers, the strong force is practically unobservable. Moreover, it holds only inside the atomic nucleus. After the nucleus was discovered in 1908, it was clear that a new force, today known as the nuclear force, was needed to overcome the electrostatic repulsion, a manifestation of electromagnetism, of the positively charged protons. Otherwise, the nucleus could not exist. Moreover, the force had to be strong enough to squeeze the protons into a volume that is about 10−15 m, much smaller than that of the entire atom. From the short range of this force, Hideki Yukawa predicted that it was associated with a massive particle, whose mass is approximately 100 MeV. The 1947 discovery of the pion ushered in the modern era of particle physics. Hundreds of hadrons were discovered from the 1940s to 1960s, and an extremely complicated theory of hadrons as strongly interacting particles was developed. Most notably:- The pions were understood to be oscillations of vacuum condensates;
- Jun John Sakurai proposed the rho and omega vector bosons to be force carrying particles for approximate symmetries of isospin and hypercharge;
- Geoffrey Chew, Edward K. Burdett and Steven Frautschi grouped the heavier hadrons into families that could be understood as vibrational and rotational excitations of strings.

### Beyond the Standard Model

Numerous theoretical efforts have been made to systematize the existing four fundamental interactions on the model of electroweak unification. Grand Unified Theories (GUTs) are proposals to show that the three fundamental interactions described by the Standard Model are all different manifestations of a single interaction with symmetries that break down and create separate interactions below some extremely high level of energy. GUTs are also expected to predict some of the relationships between constants of nature that the Standard Model treats as unrelated, as well as predicting gauge coupling unification for the relative strengths of the electromagnetic, weak, and strong forces (this was, for example, verified at the Large Electron–Positron Collider in 1991 for supersymmetric theories). Theories of everything, which integrate GUTs with a quantum gravity theory face a greater barrier, because no quantum gravity theories, which include string theory, loop quantum gravity, and twistor theory, have secured wide acceptance. Some theories look for a graviton to complete the Standard Model list of force-carrying particles, while others, like loop quantum gravity, emphasize the possibility that time-space itself may have a quantum aspect to it. Some theories beyond the Standard Model include a hypothetical fifth force, and the search for such a force is an ongoing line of experimental research in physics. In supersymmetric theories, there are particles that acquire their masses only through supersymmetry breaking effects and these particles, known as moduli can mediate new forces. Another reason to look for new forces is the recent discovery that the expansion of the universe is accelerating (also known as dark energy), giving rise to a need to explain a nonzero cosmological constant, and possibly to other modifications of general relativity. Fifth forces have also been suggested to explain phenomena such as CP violations, dark matter, and dark flow. In December 2015, two observations in the ATLAS and CMS detectors at the Large Hadron Collider hinted at the existence of a new particle six times heavier than the Higgs Boson. However, after obtaining more experimental data, the anomaly appeared to not be significant.## See also

- Standard Model
- * Strong interaction
- * Electroweak interaction
- * Weak interaction
- * Gravity
- ** Quantum gravity
- ** String Theory
- ** Theory of Everything
- Grand Unified Theory
- * Gauge coupling unification
- * Unified Field Theory
- Quintessence, a hypothesized fifth force.
*People*: Isaac Newton, James Clerk Maxwell, Albert Einstein, Richard Feynman, Sheldon Glashow, Abdus Salam, Steven Weinberg, Gerardus 't Hooft, David Gross, Edward Witten, Howard Georgi.

## References

### Bibliography

#### General

- 2nd ed.
- While all interactions are discussed, discussion is especially thorough on the weak.