On Air


Buy this Domain?
Do you interesting about this domain and the running project?
Feel free to send your offer to webmaster.
pay with Paypal


Genetically modified organism

, the first genetically modified animal to be sold as a pet]] A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques (i.e., a genetically engineered organism). GMOs are used to produce many medications and genetically modified foods and are widely used in scientific research and the production of other goods. The term GMO is very close to the technical legal term, 'living modified organism', defined in the Cartagena Protocol on Biosafety, which regulates international trade in living GMOs (specifically, "any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology"). A more specifically defined type of GMO is a "transgenic organism." This is an organism whose genetic makeup has been altered by the addition of genetic material from an unrelated organism. This should not be confused with the more general way in which "GMO" is used to classify genetically altered organisms, as typically GMOs are organisms whose genetic makeup has been altered without the addition of genetic material from an unrelated organism. The first genetically modified mouse was created in 1974, and the first plant was produced in 1983.


Genetic modification involves the mutation, insertion, or deletion of genes. Inserted genes usually come from a different species in a form of horizontal gene-transfer. In nature this can occur when exogenous DNA penetrates the cell membrane for any reason. This can be accomplished artificially by: Other methods exploit natural forms of gene transfer, such as the ability of Agrobacterium to transfer genetic material to plants, or the ability of lentiviruses to transfer genes to animal cells.{{Cite journal |author=Park F |title=Lentiviral vectors: are they the future of animal transgenesis? |journal=Physiol. Genomics |volume=31 |issue=2 |pages=159–173 |date=October 2007 |pmid=17684037 |doi=10.1152/physiolgenomics.00069.2007 |url=http://physiolgenomics.physiology.org/cgi/content/full/31/2/159 |oclc=37367250 }}


(pictured) and Stanley Cohen created the first genetically modified organism in 1973|150px]] Humans have domesticated plants and animals since around 12,000 BCE, using selective breeding or artificial selection (as contrasted with natural selection).Noel Kingsbury. Hybrid: The History and Science of Plant Breeding University of Chicago Press, 15 Oct 2009 The process of selective breeding, in which organisms with desired traits (and thus with the desired genes) are used to breed the next generation and organisms lacking the trait are not bred, is a precursor to the modern concept of genetic modification.|author=Clive Root|year=2007|publisher=Greenwood Publishing Groups}}|first1=Daniel | last1=Zohary |first2=Maria | last2=Hopf |first3=Ehud | last3=Weiss |year=2012|publisher= Oxford University Press}} Various advancements in genetics allowed humans to directly alter the DNA and therefore genes of organisms. In 1972 Paul Berg created the first recombinant DNA molecule when he combined DNA from a monkey virus with that of the lambda virus.|accessdate=27 March 2013|date=25 August 2008|publisher=I. K. International Pvt Ltd|isbn=978-81-906757-0-3|pages=456–}} Herbert Boyer and Stanley Cohen made the first genetically modified organism (GMO) in 1973. They took a gene from a bacterium that provided resistance to the antibiotic kanamycin, inserted it into a plasmid and then induced another bacteria to uptake the plasmid. The bacteria was then able to survive in the presence of kanamycin. Boyer and Cohen expressed other genes in bacteria. This included genes from the toad Xenopus laevis in 1974, creating the first GMO expressing a gene from an organism from different kingdom. created the first GM animal.]] In 1974 Rudolf Jaenisch created a transgenic mouse by introducing foreign DNA into its embryo, making it the world’s first transgenic animal.Jaenisch, R. and Mintz, B. (1974 ) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc. Natl. Acad. 71(4):1250–1254 linkhttp://www.pnas.org/content/71/4/1250 AAAS|access-date=2016-12-02}} However it took another eight years before transgenic mice were developed that passed the transgene to their offspring. Genetically modified mice were created in 1984 that carried cloned oncogenes, predisposing them to developing cancer. Mice with genes knocked out ( knockout mouse) were created in 1989. The first transgenic livestock were produced in 1985 and the first animal to synthesise transgenic proteins in their milk were mice, engineered to produce human tissue plasminogen activator in 1987. In 1983 the first genetically engineered plant was developed by Michael W. Bevan, Richard B. Flavell and Mary-Dell Chilton. They infected tobacco with Agrobacterium transformed with an antibiotic resistance gene and through tissue culture techniques were able to grow a new plant containing the resistance gene. The gene gun was invented in 1987, allowing transformation of plants not susceptible to Agrobacterium infection.Roger Segelken for the Cornell Chronicle. Mary 14, 1987. Biologists Invent Gun for Shooting Cells with DNA Issue available as pdf download here linkhttp://ecommons.cornell.edu/bitstream/1813/25239/1/018_33.pdf, page 3 In 2000, Vitamin A-enriched golden rice, was the first plant developed with increased nutrient value. In 1976 Genentech, the first genetic engineering company was founded by Herbert Boyer and Robert Swanson; a year later, the company produced a human protein ( somatostatin) in E.coli. Genentech announced the production of genetically engineered human insulin in 1978. The insulin produced by bacteria, branded humulin, was approved for release by the Food and Drug Administration in 1982. In 1988 the first human antibodies were produced in plants. In 1987, the ice-minus strain of Pseudomonas syringae became the first genetically modified organism to be released into the environmentBBC News 14 June 2002 GM crops: A bitter harvest? when a strawberry field and a potato field in California were sprayed with it.Thomas H. Maugh II for the Los Angeles Times. 9 June 1987. Altered Bacterium Does Its Job : Frost Failed to Damage Sprayed Test Crop, Company Says The first genetically modified crop, an antibiotic-resistant tobacco plant, was produced in 1982. China was the first country to commercialize transgenic plants, introducing a virus-resistant tobacco in 1992. In 1994 Calgene attained approval to commercially release the Flavr Savr tomato, the first genetically modified food. Also in 1994, the European Union approved tobacco engineered to be resistant to the herbicide bromoxynil, making it the first genetically engineered crop commercialized in Europe. An insect resistant Potato was approved for release in the USA in 1995, Genetically Altered Potato Ok'd For Crops Lawrence Journal-World - 6 May 1995 and by 1996 approval had been granted to commercially grow 8 transgenic crops and one flower crop (carnation) in 6 countries plus the EU. In 2010, scientists at the J. Craig Venter Institute, announced that they had created the first synthetic bacterial genome. They named it Synthia and it was the world's first synthetic life form. The first genetically modified animal to be commercialised was the GloFish, a Zebra fish with a fluorescent gene added that allows it to glow in the dark under ultraviolet light.{{Cite journal| last = Vàzquez-Salat| first = Núria| last2 = Salter| first2 = Brian| last3 = Smets| first3 = Greet| last4 = Houdebine| first4 = Louis-Marie| date = 2012-11-01| title = The current state of GMO governance: Are we ready for GM animals?| url = http://www.sciencedirect.com/science/article/pii/S0734975012000432| journal = Biotechnology Advances| series = Special issue on ACB 2011| volume = 30| issue = 6| pages = 1336–1343| doi = 10.1016/j.biotechadv.2012.02.006 | pmid = 22361646}} The first genetically modified animal to be approved for food use was AquAdvantage salmon in 2015. The salmon were transformed with a growth hormone-regulating gene from a Pacific Chinook salmon and a promoter from an ocean pout enabling it to grow year-round instead of only during spring and summer.


GMOs are used in biological and medical research, production of pharmaceutical drugs,http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SelectionsFromFDLIUpdateSeriesonFDAHistory/ucm081964.htm experimental medicine (e.g. gene therapy and vaccines against the Ebola virus), and agriculture (e.g. golden rice, resistance to herbicides), with developing uses in conservation. The term "genetically modified organism" does not always imply, but can include, targeted insertions of genes from one species into another. For example, a gene from a jellyfish, encoding a fluorescent protein called GFP, or green fluorescent protein, can be physically linked and thus co-expressed with mammalian genes to identify the location of the protein encoded by the GFP-tagged gene in the mammalian cell. Such methods are useful tools for biologists in many areas of research, including those who study the mechanisms of human and other diseases or fundamental biological processes in eukaryotic or prokaryotic cells.



Bacteria were the first organisms to be modified in the laboratory, due to the relative ease of modifying their genetics.{{Cite journal |doi=10.1007/BF03194657 |last=Melo |first=Eduardo O. |author2=Canavessi, Aurea M. O. |author3=Franco, Mauricio M. |author4=Rumpf, Rodolpho |title=Animal transgenesis: state of the art and applications |journal=J. Appl. Genet. |volume=48 |issue=1 |pages=47–61 |year=2007 |pmid=17272861 |url=http://jag.igr.poznan.pl/2007-Volume-48/1/pdf/2007_Volume_48_1-47-60.pdf |archiveurl=https://www.webcitation.org/5k5aYeGAs?url=http://jag.igr.poznan.pl/2007-Volume-48/1/pdf/2007_Volume_48_1-47-60.pdf |archivedate=27 September 2009 |deadurl=yes |df=dmy }} They continue to be important model organisms for experiments in genetic engineering. In the field of synthetic biology, they have been used to test various synthetic approaches, from synthesizing genomes to creating novel nucleotides. These organisms are now used for several purposes, and are particularly important in producing large amounts of pure human proteins for use in medicine.{{Cite journal |last=Leader |first=Benjamin |author2=Baca, Qentin J. |author3=Golan, David E. |series=A guide to drug discovery |title=Protein therapeutics: a summary and pharmacological classification |journal=Nature Reviews Drug Discovery |volume=7 |issue=1 |pages=21–39 |date=January 2008 |pmid=18097458 |doi=10.1038/nrd2399 }}Leader 2008 — Fee required for access to full text. Genetically modified bacteria are used to produce the protein insulin to treat diabetes.{{Cite journal |last=Walsh |first=Gary |title=Therapeutic insulins and their large-scale manufacture |journal=Appl. Microbiol. Biotechnol. |volume=67 |issue=2 |pages=151–159 |date=April 2005 |pmid=15580495 |doi=10.1007/s00253-004-1809-x }}Walsh 2005 — Fee required for access to full text. Similar bacteria have been used to produce biofuels,Summers, Rebecca (24 April 2013) " Bacteria churn out first ever petrol-like biofuel" New Scientist, Retrieved 27 April 2013 clotting factors to treat haemophilia,{{Cite journal | last=Pipe | first=Steven W. | title=Recombinant clotting factors | journal=Thromb. Haemost. | volume=99 | issue=5 | pages=840–850 |date=May 2008 | pmid=18449413 | doi=10.1160/TH07-10-0593 }} and human growth hormone to treat various forms of dwarfism.{{Cite journal | last=Bryant | first=Jackie | last2=Baxter | first2=Louise | last3=Cave | first3=Carolyn B. | last4=Milne | first4=Ruairidh | title=Recombinant growth hormone for idiopathic short stature in children and adolescents | journal=Cochrane Database Syst Rev | issue=3 | editor1-first=Jackie | pages=CD004440 | year=2007 | editor1-last=Bryant | pmid=17636758 | doi=10.1002/14651858.CD004440.pub2 | last5=Bryant | first5=Jackie }}Bryant 2007 — Fee required for access to full text.


In 2017 researchers genetically modified a virus to express spinach defensin proteins. The virus was injected into orange trees to combat citrus greening disease that had reduced orange production 70% since 2005.


In addition, various genetically engineered micro-organisms are routinely used as sources of enzymes for the manufacture of a variety of processed foods. These include alpha-amylase from bacteria, which converts starch to simple sugars, chymosin from bacteria or fungi, which clots milk protein for cheese making, and pectinesterase from fungi, which improves fruit juice clarity.Panesar, Pamit et al. (2010) Enzymes in Food Processing: Fundamentals and Potential Applications, Chapter 10, I K International Publishing House,


Transgenic plants

corn]] Transgenic plants have been engineered for scientific research, to create new colours in plants, and to create different crops. In research, plants are engineered to help discover the functions of certain genes. One way to do this is to knock out the gene of interest and see what phenotype develops. Another strategy is to attach the gene to a strong promoter and see what happens when it is over expressed. A common technique used to find out where the gene is expressed is to attach it to GUS or a similar reporter gene that allows visualisation of the location.' After thirteen years of collaborative research, an Australian company – Florigene, and a Japanese company – Suntory, created a blue rose (actually lavender or mauve) in 2004.Nosowitz, Dan (15 September 2011) " Suntory Creates Mythical Blue (Or, Um, Lavender-ish) Rose" Popular Science, Retrieved 30 August 2012 The genetic engineering involved three alterations – adding two genes, and interfering with another. One of the added genes was for the blue plant pigment delphinidin cloned from the pansy.Phys.Org website. 4 April 2005 Plant gene replacement results in the world's only blue rose The researchers then used RNA interference (RNAi) technology to depress all color production by endogenous genes by blocking a crucial protein in color production, called dihydroflavonol 4-reductase) (DFR), and adding a variant of that protein that would not be blocked by the RNAi but that would allow the delphinidin to work. The roses are sold in Japan, the United States, and Canada.Kyodo (11 September 2011 " Suntory to sell blue roses overseas" The Japan Times, Retrieved 30 August 2012 Florigene has also created and sells lavender-colored carnations that are genetically engineered in a similar way. Simple plants and plant cells have been genetically engineered for production of biopharmaceuticals in bioreactors as opposed to cultivating plants in open fields. Work has been done with duckweed Lemna minor,Gasdaska JR et al. (2003) "Advantages of Therapeutic Protein Production in the Aquatic Plant Lemna". BioProcessing Journal Mar/Apr 2003 pp 49–56 linkhttp://www.bioprocessingjournal.com/bioprocessingjournal.com/index.php/article-downloads/329-j22-advantages-of-therapeutic-protein-production-in-the-aquatic-plant-lemna the algae Chlamydomonas reinhardtii(10 December 2012) " Engineering algae to make complex anti-cancer 'designer' drug" PhysOrg, Retrieved 15 April 2013 and the moss Physcomitrella patens. An Israeli company, Protalix, has developed a method to produce therapeutics in cultured transgenic carrot and tobacco cells. Protalix technology platform Protalix and its partner, Pfizer, received FDA approval to market its drug Elelyso, a treatment for Gaucher's disease, in 2012.Gali Weinreb and Koby Yeshayahou for Globes 2 May 2012. " FDA approves Protalix Gaucher treatment "

=Genetically modified crops

= Genetically modified crops (GM crops, or biotech crops) are plants used in agriculture, the DNA of which has been modified using genetic engineering techniques. In most cases the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, or environmental conditions, reduction of spoilage, or resistance to chemical treatments (e.g. resistance to a herbicide), or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. Farmers have widely adopted GM technology. Between 1996 and 2013, the total surface area of land cultivated with GM crops increased by a factor of 100, from to 1,750,000 km2 (432 million acres).ISAAA 2013 Annual Report Executive Summary, Global Status of Commercialized Biotech/GM Crops: 2013 ISAAA Brief 46-2013, Retrieved 6 August 2014 10% of the world's croplands were planted with GM crops in 2010. In the US, by 2014, 94% of the planted area of soybeans, 96% of cotton and 93% of corn were genetically modified varieties. In recent years GM crops expanded rapidly in developing countries. In 2013 approximately 18 million farmers grew 54% of worldwide GM crops in developing countries. For discussions of issues about GM crops and GM food, see the Controversies section below and the article on genetically modified food controversies.

Cisgenic plants

Cisgenesis, sometimes also called intragenesis, is a product designation for a category of genetically engineered plants. A variety of classification schemes have been proposed that order genetically modified organisms based on the nature of introduced genotypical changes rather than the process of genetic engineering. While some genetically modified plants are developed by the introduction of a gene originating from distant, sexually incompatible species into the host genome, cisgenic plants contain genes that have been isolated either directly from the host species or from sexually compatible species. The new genes are introduced using recombinant DNA methods and gene transfer. Some scientists hope that the approval process of cisgenic plants might be simpler than that of proper transgenics, but it remains to be seen.Prins, T. W. and Kok, E. J. (2010) Food and feed safety aspects of cisgenic crop plant varieties Report 2010.001, Project number: 120.72.667.01, RIKILT – Institute of Food Safety, Netherlands. Retrieved 6 September 2010.

Conservation in plants

Genetically modified organisms have been proposed to aid conservation of plant species threatened by extinction. Many trees face the threat of invasive plants and diseases, such as the emerald ash borer in North American and the fungal disease, Ceratocystis platani, in European plane trees. A suggested solution to increase the resilience of threatened tree species is to genetically modify individuals by transferring resistant genes. Papaya trees are an example of a species that was successfully conserved using genetic modification. The papaya ringspot virus (PRSV) devastated papaya trees in Hawaii in the twentieth century until transgenic papaya plants were given pathogen-derived resistance. However, genetic modification for conservation in plants remains mainly speculative and further experimentation is needed before the technique can be widely implemented. A main concern with using genetic modification for conservation purposes is that a transgenic species may no longer bear enough resemblance to the original species to truly claim that the original species is being conserved. Instead, the transgenic species may be genetically different enough to be considered a new species, thus diminishing the conservation worth of genetic modification.


, like the blotched mouse shown, are created through genetic modification techniques like gene targeting.]] Genetically modified mammals are an important category of genetically modified organisms.EFSA (2012). Genetically modified animals Europe: EFSA Ralph L. Brinster and Richard Palmiter developed the techniques responsible for transgenic mice, rats, rabbits, sheep, and pigs in the early 1980s, and established many of the first transgenic models of human disease, including the first carcinoma caused by a transgene. The process of genetically engineering animals is a slow, tedious, and expensive process. However, new technologies are making genetic modifications easier and more precise.Murray, Joo (20). Genetically modified animals. Canada: Brainwaving The first transgenic (genetically modified) animal was produced by injecting DNA into mouse embryos then implanting the embryos in female mice. Genetically modified animals currently being developed can be placed into six different broad classes based on the intended purpose of the genetic modification:
  1. to research human diseases (for example, to develop animal models for these diseases);
  2. to produce industrial or consumer products (fibres for multiple uses);
  3. to produce products intended for human therapeutic use (pharmaceutical products or tissue for implantation);
  4. to enrich or enhance the animals' interactions with humans (hypo-allergenic pets);
  5. to enhance production or food quality traits (faster growing fish, pigs that digest food more efficiently);
  6. to improve animal health (disease resistance)Rudinko, Larisa (20). Guidance for industry. USA: Center for veterinary medicine Link.

Research use

was a female domestic sheep and the first animal to be cloned from an adult somatic cell]] Transgenic animals are used as experimental models to perform phenotypic and for testing in biomedical research. Genetically modified (genetically engineered) animals are becoming more vital to the discovery and development of cures and treatments for many serious diseases. By altering the DNA or transferring DNA to an animal, we can develop certain proteins that may be used in medical treatment. Stable expressions of human proteins have been developed in many animals, including sheep, pigs, and rats. Human-alpha-1-antitrypsin, which has been tested in sheep and is used in treating humans with this deficiency and transgenic pigs with human-histo-compatibility have been studied in the hopes that the organs will be suitable for transplant with less chances of rejection. Scientists have genetically engineered several organisms, including some mammals, to include green fluorescent protein (GFP), first observed in the jellyfish, Aequorea victoria in 1962, for medical research purposes ( Chalfie, Shimoura, and Tsien were awarded the Nobel prize in Chemistry in 2008 for the discovery and development of GFP). For example, fluorescent pigs have been bred to study human organ transplants ( xenotransplantation), regenerating ocular photoreceptor cells, and other topics.Randall S. et al. (2008) " Genetically Modified Pigs for Medicine and Agriculture " Biotechnology and Genetic Engineering Reviews – Vol. 25, 245–266, Retrieved 31 August 2012 In 2011 a Japanese-American team created green-fluorescent cats to find therapies for HIV/AIDS and other diseases as feline immunodeficiency virus (FIV) is related to HIV.Staff (3 April 2012) Biology of HIV National Institute of Allergy and Infectious Diseases, Retrieved 31 August 2012. In 2009, scientists in Japan announced that they had successfully transferred a gene into a primate species ( marmosets) and produced a stable line of breeding transgenic primates for the first time. Their first research target for these marmosets was Parkinson's disease, but they were also considering amyotrophic lateral sclerosis and Huntington's disease.

Human therapeutics and xenotransplants

Within the field known as pharming, intensive research has been conducted to develop transgenic animals that produce biotherapeutics. On 6 February 2009, the U.S. Food and Drug Administration approved the first human biological drug produced from such an animal, a goat. The drug, ATryn, is an anticoagulant which reduces the probability of blood clots during surgery or childbirth. It is extracted from the goat's milk.Britt Erickson, 10 February 2009, for Chemical & Engineering News. FDA Approves Drug From Transgenic Goat Milk Accessed 6 October 2012 Some animals are also genetically modified so that they can provide organs that are suitable and safe to transplant into humans ( xenotransplants). An example are pigs that are genetically modified so that their organs can no longer carry retroviruses (which can pose a danger to humans, when transplanted into them). Editing of Pig DNA May Lead to More Organs for People Other genetically modified pigs have had alpha galactosidase transferase knocked out and fortified with hCD46 and the hTM molecule. GTKO study conducted by the National Heart, Lung, and Blood Institute of the U.S. National Institutes of Health Pig lungs from genetically modified pigs for instance are already being considered for transplantation into humans. New life for pig-to-human transplants United Therapeutics considering pig-lungs for transplant into humans Besides use of genetic modification to allow the providing of safer animal organs for transplantation, genetic modification can also be used to allow the animal to grow human organs inside their body. Such animals, which are hence composed of a mixture of cells from more than one species, are called " chimera's" Chimera term One project, undertaken by Pablo Ross of the University of California, involves the growing of a human pancreas inside a pig. Scientists attempting to harvest human organs in pigs create human-pig embryo Human-pig chimeras are being grown – what will they let us do? Human pancreas grown in pig in trial that could lead to harvesting of donor organs US bid to grow human organs for transplant inside pigs

Food quality traits

In 2006, a pig was engineered to produce omega-3 fatty acids through the expression of a roundworm gene. Enviropig was a genetically enhanced line of Yorkshire pigs in Canada created with the capability of digesting plant phosphorus more efficiently than conventional Yorkshire pigs. The project ended in 2012.Guelph(2010). Enviropig. Canada:Schimdt, Sarah. " Genetically engineered pigs killed after funding ends", Postmedia News, 22 June 2012. Accessed 31 July 2012. These pigs produced the enzyme phytase, which breaks down the indigestible phosphorus, in their saliva. The enzyme was introduced into the pig chromosome by pronuclear microinjection. With this enzyme, the animal is able to digest cereal grain phosphorus. The use of these pigs would reduce the potential of water pollution since they excrete from 30 to 70.7% less phosphorus in manure depending upon the age and diet. The lower concentrations of phosphorus in surface runoff reduces algal growth, because phosphorus is the limiting nutrient for algae. Because algae consume large amounts of oxygen, it can result in dead zones for fish. In 2011, Chinese scientists generated dairy cows genetically engineered with genes from human beings to produce milk that would be the same as human breast milk.Gray, Richard(2011). "Genetically modified cows produce 'human' milk" This could potentially benefit mothers who cannot produce breast milk but want their children to have breast milk rather than formula. Aside from milk production, the researchers claim these transgenic cows to be identical to regular cows. Two months later scientists from Argentina presented Rosita, a transgenic cow incorporating two human genes, to produce milk with similar properties as human breast milk. In 2012, researchers from New Zealand also developed a genetically engineered cow that produced allergy-free milk. Goats have been genetically engineered to produce milk with strong spiderweb-like silk proteins in their milk.Zyga, Lisa(2010). " Scientist bred goats that produce spider silk ".

Human gene therapy

Gene therapy, uses genetically modified viruses to deliver genes that can cure disease in humans. Although gene therapy is still relatively new, it has had some successes. It has been used to treat genetic disorders such as severe combined immunodeficiency, and Leber's congenital amaurosis.Richards, Sabrina (6 November 2012) " Gene therapy arrives in Europe" The Scientist, Retrieved 15 April 2013 Treatments are also being developed for a range of other currently incurable diseases, such as cystic fibrosis, sickle cell anemia, Parkinson's disease,Gallaher, James " Gene therapy 'treats' Parkinson's disease" BBC News Health, 17 March 2011. Retrieved 24 April 2011 cancer,Urbina, Zachary (12 February 2013) " Genetically Engineered Virus Fights Liver Cancer " United Academics, Retrieved 15 February 2013Coghlan, Andy (26 March 2013) " Gene therapy cures leukaemia in eight days" The New Scientist, Retrieved 15 April 2013 diabetes,Staff (13 February 2013) " Gene therapy cures diabetic dogs" New Scientist, Retrieved 15 February 2013 heart disease(30 April 2013) " New gene therapy trial gives hope to people with heart failure" British Heart Foundation, Retrieved 5 May 2013 and muscular dystrophy.

Conservation use

Genetically modified organisms have been used to conserve European wild rabbits in the Iberian peninsula and Australia. In both cases, the genetically modified organism used was a myxoma virus, but for opposite purposes: to protect the endangered population in Europe with immunizations and to regulate the overabundant population in Australia with contraceptives. In the Iberian peninsula, the European wild rabbit population has experienced a sharp decline from viral diseases and overhunting. To protect the species from viral diseases, the myxoma virus was genetically modified to immunize the rabbits. The European wild rabbit population in Australia faces the opposite problem: lack of natural predators has made the introduced species invasive. The same myxoma virus was genetically modified to lower fertility in the Australian rabbit population.


Genetically modified fish are used for scientific research and as pets, and are being considered for use as food and as aquatic pollution sensors. GM fish are widely used in basic research in genetics and development. Two species of fish, zebrafish and medaka, are most commonly modified because they have optically clear chorions (membranes in the egg), rapidly develop, and the 1-cell embryo is easy to see and microinject with transgenic DNA.Hackett, P. B., Ekker, S. E. and Essner, J. J. (2004) Applications of transposable elements in fish for transgenesis and functional genomics. Fish Development and Genetics (Z. Gong and V. Korzh, eds.) World Scientific, Inc., Chapter 16, 532–580. The GloFish is a patentedPublished PCT Application WO2000049150 "Chimeric Gene Constructs for Generation of Fluorescent Transgenic Ornamental Fish". National University of Singapore linkhttp://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000049150 brand of genetically modified (GM) fluorescent zebrafish with bright red, green, and orange fluorescent color. Although not originally developed for the ornamental fish trade, it became the first genetically modified animal to become publicly available as a pet when it was introduced for sale in 2003.Eric Hallerman "Glofish, The First GM Animal Commercialized: Profits amid Controversy". June, 2004. Accessed 3 September 2012. linkhttp://www.isb.vt.edu/articles/jun0405.htm They were quickly banned for sale in California. GM fish have been developed with promoters driving an over-production of "all fish" growth hormone for use in the aquaculture industry to increase the speed of development and potentially reduce fishing pressure on wild stocks. This has resulted in dramatic growth enhancement in several species, including salmon, trout and tilapia. AquaBounty Technologies, a biotechnology company working on bringing a GM salmon to market, claims that their GM AquAdvantage salmon can mature in half the time as wild salmon. AquaBounty applied for regulatory approval to market their GM salmon in the US, and was approved in November 2015. On 25 November 2013 Canada approved commercial scale production and export of GM Salmon eggs but they are not approved for human consumption in Canada. Several academic groups have been developing GM zebrafish to detect aquatic pollution. The lab that originated the GloFish discussed above originally developed them to change color in the presence of pollutants, to be used as environmental sensors. National University of Singapore Enterprise webpage " Zebra Fish as Pollution Indicators" Page last modified on 31 July 2001. Accessed October 2012 A lab at University of Cincinnati has been developing GM zebrafish for the same purpose, as has a lab at Tulane University. Recent research on pain in fish has resulted in concerns being raised that genetic-modifications induced for scientific research may have detrimental effects on the welfare of fish.


Genetically modified frogs are used for scientific research and are widely used in basic research including genetics and early development. Two species of frog, Xenopus laevis and Xenopus tropicalis, are most commonly used. GM frogs are also being used as pollution sensors, especially for endocrine disrupting chemicals.{{Cite journal | last = Fini | first = Jean-Baptiste | last2 = Le Mevel | first2 = Sebastien | last3 = Turque | first3 = Nathalie | last4 = Palmier | first4 = Karima | last5 = Zalko | first5 = Daniel | last6 = Cravedi | first6 = Jean-Pierre | last7 = Demeneix | first7 = Barbara A. | date = 2007-08-15 | title = An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption | journal = Environmental Science & Technology | volume = 41 | issue = 16 | pages = 5908–5914 | issn = 0013-936X | pmid = 17874805 | doi=10.1021/es0704129 | bibcode = 2007EnST...41.5908F }}


Fruit flies

In biological research, transgenic fruit flies ( Drosophila melanogaster) are model organisms used to study the effects of genetic changes on development. Fruit flies are often preferred over other animals due to their short life cycle, low maintenance requirements, and relatively simple genome compared to many vertebrates.


In 2010, scientists created "malaria-resistant mosquitoes" in the laboratory.Gallagher, James " GM mosquitoes offer malaria hope" BBC News, Health, 20 April 2011. Retrieved 22 April 2011 The World Health Organization estimated that malaria killed almost one million people in 2008. World Health Organization, Malaria, Key Facts Retrieved 22 April 2011 Genetically modified male mosquitoes containing a lethal gene have been developed to combat the spread of dengue fever and the Zika virus. Aedes aegypti mosquitoes, the single most important carrier of dengue fever and the Zika virus, were reduced by 80% in a 2010 trial of these GM mosquitoes in the Cayman IslandsStaff (March 2011) " Cayman demonstrates RIDL potential" Oxitec Newsletter, March 2011. Retrieved 20 September 2011 and by 90% in a 2015 trial in Bahia, Brazil. In comparison, the Florida Keys Mosquito Control District has achieved only 30%-60% population reduction with traps and pesticide spraying.https://www.theverge.com/2016/8/5/12387616/zika-florida-genetically-modified-mosquitoes-gene In 2016 FDA approved a genetically modified mosquito intervention for Key West, Florida. UK firm Oxitec proposed the release of millions of modified male (non-biting) mosquitoes to compete with wild males for mates. The males are engineered so that their offspring die before maturing, helping to eradicate mosquito-borne disease. Final approval was to be based on a local referendum to be held in November. Andrea Crisanti, a molecular biologist at Imperial College in London is working on ways to stop the A. gambiae mosquito from transmitting disease.


A strain of Pectinophora gossypiella ( Pink bollworm) has been genetically engineered to express a red fluorescent protein. This allows researchers to monitor bollworms that have been sterilized by radiation and released to reduce bollworm infestation. The strain has been field tested for over three years and has been approved for release.Nicholls, Henry (14 September 2011) " Swarm troopers: Mutant armies waging war in the wild" The New Scientist. Retrieved 20 September 2011Staff Pink Bollworm Oxitec, Retrieved 17 August 2014


Cnidaria such as Hydra and the sea anemone Nematostella vectensis are attractive model organisms to study the evolution of immunity and certain developmental processes. An important technical breakthrough was the development of procedures for generation of stable transgenic hydras and sea anemones by embryo microinjection.


The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of genetically modified organisms (GMO), including genetically modified crops and genetically modified fish. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the USA and Europe. Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety. The European Union differentiates between approval for cultivation within the EU and approval for import and processing. Purnhagen, Wesseler (2016): "The "Honey" Judgment of Bablok and Others Versus Freistaat Bayern in the Court of Justice of the European Union: Implications for Co-existence". In N. Kalaitzandonakes et al. (eds.), The Coexistence of Genetically Modified, Organic and Conventional Foods., pp. 149–165 – 150-153. New York: Springer Science While only a few GMOs have been approved for cultivation in the EU a number of GMOs have been approved for import and processing. Wesseler, J. and N. Kalaitzandonakes (2011): "Present and Future EU GMO policy". In Arie Oskam, Gerrit Meesters and Huib Silvis (eds.), EU Policy for Agriculture, Food and Rural Areas. Second Edition, pp. 23–323 – 23-332. Wageningen: Wageningen Academic Publishers The cultivation of GMOs has triggered a debate about the market for GMOs in Europe. Purnhagen, Wesseler (2016): Social, Economic and Legal Avenues". In N. Kalaitzandonakes et al. (eds.), The Coexistence of Genetically Modified, Organic and Conventional Foods., pp. 71–85. New York: Springer Science Depending on the coexistence regulations, incentives for cultivation of GM crops differ.Beckmann, V., C. Soregaroli, J. Wesseler (2011): "Coexistence of genetically modified (GM) and non-modified (non GM) crops: Are the two main property rights regimes equivalent with respect to the coexistence value?" In Genetically modified food and global welfare edited by Colin Carter, GianCarlo Moschini and Ian Sheldon, pp 201–224. Volume 10 in Frontiers of Economics and Globalization Series. Bingley, UK: Emerald Group Publishing


There is controversy over GMOs, especially with regard to their use in producing food. The dispute involves buyers, biotechnology companies, governmental regulators, nongovernmental organizations, and scientists. The key areas of controversy related to GMO food are whether GM food should be labeled, the role of government regulators, the effect of GM crops on health and the environment, the effect on pesticide resistance, the impact of GM crops for farmers, and the role of GM crops in feeding the world population. In 2014, sales of products that had been labeled as non-GMO grew 30 percent to $1.1 billion. There is a scientific consensusBut see also:And contrast:and that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction.Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle: Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. No reports of ill effects have been proven in the human population from ingesting GM food.American Medical Association (2012). " Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods" "Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature." (first page)United States Institute of Medicine and National Research Council (2004). "Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects". National Academies Press. Free full-text. National Academies Press. pp R9-10: "In contrast to adverse health effects that have been associated with some traditional food production methods, similar serious health effects have not been identified as a result of genetic engineering techniques used in food production. This may be because developers of bioengineered organisms perform extensive compositional analyses to determine that each phenotype is desirable and to ensure that unintended changes have not occurred in key components of food." Although labeling of GMO products in the marketplace is required in many countries, it is not required in the United States and no distinction between marketed GMO and non-GMO foods is recognized by the US FDA. In a May 2014 article in The Economist it was argued that, while GM foods could potentially help feed 842 million malnourished people globally, laws such as the one passed in Vermont, to require labeling of foods containing genetically modified ingredients, could have the unintended consequence of interrupting the process of spreading GM technologies to impoverished countries that suffer with food security problems. The Organic Consumers Association, and the Union of Concerned Scientists,Nathanael Johnson for Grist. 8 Jul 2013 The genetically modified food debate: Where do we begin?JoAnna Wendel for the Genetic Literacy Project. 10 September 2013 Scientists, journalists and farmers join lively GMO forumKeith Kloor for Discover Magazine's CollideAScape 22 August 2014 On Double Standards and the Union of Concerned ScientistsUnion of Concerned Scientists. Alternatives to Genetic Engineering. Page source description: "Biotechnology companies produce genetically engineered crops to control insects and weeds and to manufacture pharmaceuticals and other chemicals. The Union of Concerned Scientists works to strengthen the federal oversight needed to prevent such products from contaminating our food supply."Emily Marden, Risk and Regulation: U.S. Regulatory Policy on Genetically Modified Food and Agriculture 44 B.C.L. Rev. 733 (2003). Quote: "By the late 1990s, public awareness of GM foods reached a critical level and a number of public interest groups emerged to focus on the issue. One of the early groups to focus on the issue was Mothers for Natural Law ("MFNL"), an Iowa based organization that aimed to ban GM foods from the market.... The Union of Concerned Scientists ("UCS"), an alliance of 50,000 citizens and scientists, has been another prominent voice on the issue.... As the pace of GM products entering the market increased in the 1990s, UCS became a vocal critic of what it saw as the agency’s collusion with industry and failure to fully take account of allergenicity and other safety issues." and Greenpeace stated that risks have not been adequately identified and managed, and they have questioned the objectivity of regulatory authorities. Some health groups say there are unanswered questions regarding the potential long-term impact on human health from food derived from GMOs, and propose mandatory labeling British Medical Association Board of Science and Education (2004). " Genetically modified food and health: A second interim statement". March.Public Health Association of Australia (2007) " Genetically Modified Foods" PHAA AGM 2007 or a moratorium on such products. Canadian Association of Physicians for the Environment (2013) " Statement on Genetically Modified Organisms in the Environment and the Marketplace". October 2013Irish Doctors' Environmental Association " IDEA Position on Genetically Modified Foods ". Retrieved 3/25/14PR Newswire " Genetically Modified Maize: Doctors' Chamber Warns of 'Unpredictable Results' to Humans". 11 November 2013 Concerns include contamination of the non-genetically modified food supply, Chartered Institute of Environmental Health (2006) " Proposals for managing the coexistence of GM, conventional and organic crops Response to the Department for Environment, Food and Rural Affairs consultation paper". October 2006Paull, John (2015) GMOs and organic agriculture: Six lessons from Australia, Agriculture & Forestry, 61(1): 7-14. effects of GMOs on the environment and nature, the rigor of the regulatory process, American Medical Association (2012). " Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods". "To better detect potential harms of bioengineered foods, the Council believes that pre-market safety assessment should shift from a voluntary notification process to a mandatory requirement." page 7 and consolidation of control of the food supply in companies that make and sell GMOs, or concerns over the use of herbicides with glyphosate.

See also


External links

"green air" © 2007 - Ingo Malchow, Webdesign Neustrelitz
This article based upon the http://en.wikipedia.org/wiki/Genetically_modified_organism, the free encyclopaedia Wikipedia and is licensed under the GNU Free Documentation License.
Further informations available on the list of authors and history: http://en.wikipedia.org/w/index.php?title=Genetically_modified_organism&action=history
presented by: Ingo Malchow, Mirower Bogen 22, 17235 Neustrelitz, Germany