On Air


In vitro

In vitro studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in animals, including humans, and whole plants.


In vitro (; often not italicized in English) studies are conducted using components of an organism that have been isolated from their usual biological surroundings, such as microorganisms, cells, or biological molecules. For example, microrganisms or cells can be studied in artificial culture media, and proteins can be examined in solutions. Colloquially called "test-tube experiments", these studies in biology, medicine, and their subdisciplines are traditionally done in test tubes, flasks, Petri dishes, etc. They now involve the full range of techniques used in molecular biology, such as the omics. In contrast, studies conducted in living beings (microorganisms, animals, humans, or whole plants) are called in vivo .


Examples of in vitro studies include: the isolation, growth and identification of cells derived from multicellular organisms in ( cell or tissue culture); subcellular components (e.g. mitochondria or ribosomes); cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts); purified molecules such as proteins, DNA, or RNA); and the commercial production of antibiotics and other pharmaceutical products. Viruses, which only replicate in living cells, are studied in the laboratory in cell or tissue culture, and many animal virologists refer to such work as being in vitro to distinguish it from in vivo work in whole animals.
  • Polymerase chain reaction is a method for selective replication of specific DNA and RNA sequences in the test tube.
  • Protein purification involves the isolation of a specific protein of interest from a complex mixture of proteins, often obtained from homogenized cells or tissues.
  • In vitro fertilization is used to allow spermatozoa to fertilize eggs in a culture dish before implanting the resulting embryo or embryos into the uterus of the prospective mother.
  • In vitro diagnostics refers to a wide range of medical and veterinary laboratory tests that are used to diagnose diseases and monitor the clinical status of patients using samples of blood, cells, or other tissues obtained from a patient.
  • In vitro testing has been used to characterize specific adsorption, distribution, metabolism, and excretion processes of drugs or general chemicals inside a living organism; for example, Caco-2 cell experiments can be performed to estimate the absorption of compounds through the lining of the gastrointestinal tract;

Convenience, automation

In vitro methods can be miniaturized and automated, yielding high-throughput screening methods for testing molecules in pharmacology or toxicology


The primary disadvantage of in vitro experimental studies is that it may be challenging to extrapolate from the results of in vitro work back to the biology of the intact organism. Investigators doing in vitro work must be careful to avoid over-interpretation of their results, which can lead to erroneous conclusions about organismal and systems biology. For example, scientists developing a new viral drug to treat an infection with a pathogenic virus (e.g. HIV-1) may find that a candidate drug functions to prevent viral replication in an in vitro setting (typically cell culture). However, before this drug is used in the clinic, it must progress through a series of in vivo trials to determine if it is safe and effective in intact organisms (typically small animals, primates, and humans in succession). Typically, most candidate drugs that are effective in vitro prove to be ineffective in vivo because of issues associated with delivery of the drug to the affected tissues, toxicity towards essential parts of the organism that were not represented in the initial in vitro studies, or other issues.

In vitro to in vivo extrapolation

Results obtained from in vitro experiments cannot usually be transposed, as is, to predict the reaction of an entire organism in vivo. Building a consistent and reliable extrapolation procedure from in vitro results to in vivo is therefore extremely important. Solutions include:
  • Increasing the complexity of in vitro systems to reproduce tissues and interactions between them (as in “human on chip” systems)
  • Using mathematical modeling to numerically simulate the behavior of the complex system, where the in vitro data provide model parameter values
"green air" © 2007 - Ingo Malchow, Webdesign Neustrelitz
This article based upon the http://en.wikipedia.org/wiki/In_vitro, the free encyclopaedia Wikipedia and is licensed under the GNU Free Documentation License.
Further informations available on the list of authors and history: http://en.wikipedia.org/w/index.php?title=In_vitro&action=history
presented by: Ingo Malchow, Mirower Bogen 22, 17235 Neustrelitz, Germany