# Standard Model

The

**Standard Model**of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, Although the Standard Model is believed to be theoretically self-consistentIn fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods applicable to current experiments are all self-consistent. For a further discussion see e.g. Chapter 25 of {{cite book |author=R. Mann |year=2010 |title=An Introduction to Particle Physics and the Standard Model |publisher= CRC Press |isbn=978-1-4200-8298-2 }} and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained and falls short of being a complete theory of fundamental interactions. It does not fully explain baryon asymmetry, incorporate the full theory of gravitationSean Carroll, Ph.D., Caltech, 2007, The Teaching Company,*Dark Matter, Dark Energy: The Dark Side of the Universe*, Guidebook Part 2 page 59, Accessed Oct. 7, 2013, "...Standard Model of Particle Physics: The modern theory of elementary particles and their interactions ... It does not, strictly speaking, include gravity, although it's often convenient to include gravitons among the known particles of nature..." as described by general relativity, or account for the accelerating expansion of the Universe as possibly described by dark energy. The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses. The development of the Standard Model was driven by theoretical and experimental particle physicists alike. For theorists, the Standard Model is a paradigm of a quantum field theory, which exhibits a wide range of physics including spontaneous symmetry breaking, anomalies and non-perturbative behavior. It is used as a basis for building more exotic models that incorporate hypothetical particles, extra dimensions, and elaborate symmetries (such as supersymmetry) in an attempt to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations.## Historical background

The first step towards the Standard Model was Sheldon Glashow's discovery in 1961 of a way to combine the electromagnetic and weak interactions. The Higgs mechanism is believed to give rise to the masses of all the elementary particles in the Standard Model. This includes the masses of the W and Z bosons, and the masses of the fermions, i.e. the quarks and leptons. After the neutral weak currents caused by Z boson exchange were discovered at CERN in 1973, The theory of the strong interaction (i.e. quantum chromodynamics, QCD), to which many contributed, acquired its modern form in 1973–74 when asymptotic freedom was proposed |last1=Aubert |first1=J. |year=1974 |title=Experimental Observation of a Heavy Particle J |journal= Physical Review Letters |volume=33 |issue=23 |pages=1404–1406 |bibcode = 1974PhRvL..33.1404A |doi=10.1103/PhysRevLett.33.1404 |display-authors=etal}}{{cite journal |last1=Augustin |first1=J. |year=1974 |title=Discovery of a Narrow Resonance in e+e− Annihilation |journal= Physical Review Letters |volume=33 |issue=23 |pages=1406–1408 |bibcode = 1974PhRvL..33.1406A |doi=10.1103/PhysRevLett.33.1406 |display-authors=etal}}## Overview

At present, matter and energy are best understood in terms of the kinematics and interactions of elementary particles. To date, physics has reduced the laws governing the behavior and interaction of all known forms of matter and energy to a small set of fundamental laws and theories. A major goal of physics is to find the "common ground" that would unite all of these theories into one integrated theory of everything, of which all the other known laws would be special cases, and from which the behavior of all matter and energy could be derived (at least in principle)."Details can be worked out if the situation is simple enough for us to make an approximation, which is almost never, but often we can understand more or less what is happening." from*The Feynman Lectures on Physics*, Vol 1. pp. 2–7## Particle content

The Standard Model includes members of several classes of elementary particles, which in turn can be distinguished by other characteristics, such as color charge. All particles can be summarized as follows:### Fermions

, T3, weak hypercharge, YW, and color charge of all known elementary particles, rotated by the weak mixing angle to show electric charge, Q, roughly along the vertical. The neutral Higgs field (gray square) breaks the electroweak symmetry and interacts with other particles to give them mass.]] --> The Standard Model includes 12 elementary particles of spin , known as fermions. According to the spin–statistics theorem, fermions respect the Pauli exclusion principle. Each fermion has a corresponding antiparticle. The fermions of the Standard Model are classified according to how they interact (or equivalently, by what charges they carry). There are six quarks ( up, down, charm, strange, top, bottom), and six leptons ( electron, electron neutrino, muon, muon neutrino, tau, tau neutrino). Pairs from each classification are grouped together to form a generation, with corresponding particles exhibiting similar physical behavior (see table). The defining property of the quarks is that they carry color charge, and hence interact via the strong interaction. A phenomenon called color confinement results in quarks being very strongly bound to one another, forming color-neutral composite particles ( hadrons) containing either a quark and an antiquark ( mesons) or three quarks ( baryons). The familiar proton and neutron are the two baryons having the smallest mass. Quarks also carry electric charge and weak isospin. Hence they interact with other fermions both electromagnetically and via the weak interaction. The remaining six fermions do not carry color charge and are called leptons. The three neutrinos do not carry electric charge either, so their motion is directly influenced only by the weak nuclear force, which makes them notoriously difficult to detect. However, by virtue of carrying an electric charge, the electron, muon, and tau all interact electromagnetically. Each member of a generation has greater mass than the corresponding particles of lower generations. The first-generation charged particles do not decay, hence all ordinary ( baryonic) matter is made of such particles. Specifically, all atoms consist of electrons orbiting around atomic nuclei, ultimately constituted of up and down quarks. Second- and third-generation charged particles, on the other hand, decay with very short half-lives and are observed only in very high-energy environments. Neutrinos of all generations also do not decay and pervade the universe, but rarely interact with baryonic matter.### Gauge bosons

In the Standard Model, gauge bosons are defined as force carriers that mediate the strong, weak, and electromagnetic fundamental interactions. Interactions in physics are the ways that particles influence other particles. At a macroscopic level, electromagnetism allows particles to interact with one another via electric and magnetic fields, and gravitation allows particles with mass to attract one another in accordance with Einstein's theory of general relativity. The Standard Model explains such forces as resulting from matter particles exchanging other particles, generally referred to as*force mediating particles*. When a force-mediating particle is exchanged, at a macroscopic level the effect is equivalent to a force influencing both of them, and the particle is therefore said to have*mediated*(i.e., been the agent of) that force. The Feynman diagram calculations, which are a graphical representation of the perturbation theory approximation, invoke "force mediating particles", and when applied to analyze high-energy scattering experiments are in reasonable agreement with the data. However, perturbation theory (and with it the concept of a "force-mediating particle") fails in other situations. These include low-energy quantum chromodynamics, bound states, and solitons. The gauge bosons of the Standard Model all have spin (as do matter particles). The value of the spin is 1, making them bosons. As a result, they do not follow the Pauli exclusion principle that constrains fermions: thus bosons (e.g. photons) do not have a theoretical limit on their spatial density (number per volume). The different types of gauge bosons are described below.- Photons mediate the electromagnetic force between electrically charged particles. The photon is massless and is well-described by the theory of quantum electrodynamics.
- The being more massive than the . The weak interactions involving the exclusively act on
*left-handed*particles and*right-handed*antiparticles. Furthermore, the carries an electric charge of +1 and −1 and couples to the electromagnetic interaction. The electrically neutral boson interacts with both left-handed particles and antiparticles. These three gauge bosons along with the photons are grouped together, as collectively mediating the electroweak interaction. - The eight gluons mediate the strong interactions between color charged particles (the quarks). Gluons are massless. The eightfold multiplicity of gluons is labeled by a combination of color and anticolor charge (e.g. red–antigreen).Technically, there are nine such color–anticolor combinations. However, there is one color-symmetric combination that can be constructed out of a linear superposition of the nine combinations, reducing the count to eight. Because the gluons have an effective color charge, they can also interact among themselves. The gluons and their interactions are described by the theory of quantum chromodynamics.

### Higgs boson

The Higgs particle is a massive scalar elementary particle theorized by Peter Higgs in 1964, when he showed that Goldstone's 1962 theorem (generic continuous symmetry, which is spontaneously broken) provides a third polarisation of a massive vector field. Hence, Goldstone's original scalar doublet, the massive spin-zero particle, was proposed as the Higgs boson. (see 1964 PRL symmetry breaking papers) and is a key building block in the Standard Model. The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the W and Z bosons are very heavy. Elementary-particle masses, and the differences between electromagnetism (mediated by the photon) and the weak force (mediated by the W and Z bosons), are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, the Higgs boson generates the masses of the leptons (electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself. Because the Higgs boson is a very massive particle and also decays almost immediately when created, only a very high-energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the Large Hadron Collider (LHC) at CERN began in early 2010 and were performed at Fermilab's Tevatron until its closure in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles becomes visible at energies above ; On 4 July 2012, two of the experiments at the LHC ( ATLAS and CMS) both reported independently that they found a new particle with a mass of about (about 133 proton masses, on the order of 10−25 kg), which is "consistent with the Higgs boson".## Theoretical aspects

### Construction of the Standard Model Lagrangian

Technically, quantum field theory provides the mathematical framework for the Standard Model, in which a Lagrangian controls the dynamics and kinematics of the theory. Each kind of particle is described in terms of a dynamical field that pervades space-time. The construction of the Standard Model proceeds following the modern method of constructing most field theories: by first postulating a set of symmetries of the system, and then by writing down the most general renormalizable Lagrangian from its particle (field) content that observes these symmetries. The global Poincaré symmetry is postulated for all relativistic quantum field theories. It consists of the familiar translational symmetry, rotational symmetry and the inertial reference frame invariance central to the theory of special relativity. The local SU(3)×SU(2)×U(1) gauge symmetry is an internal symmetry that essentially defines the Standard Model. Roughly, the three factors of the gauge symmetry give rise to the three fundamental interactions. The fields fall into different representations of the various symmetry groups of the Standard Model (see table). Upon writing the most general Lagrangian, one finds that the dynamics depends on 19 parameters, whose numerical values are established by experiment. The parameters are summarized in the table (made visible by clicking "show") above (note: the Higgs mass is at 125 GeV, the Higgs self-coupling strength ~ ).#### Quantum chromodynamics sector

The quantum chromodynamics (QCD) sector defines the interactions between quarks and gluons, with SU(3) symmetry, generated by . Since leptons do not interact with gluons, they are not affected by this sector. The Dirac Lagrangian of the quarks coupled to the gluon fields is given by \mathcal{L}_\text{QCD} = \sum_\psi \overline{\psi}_i \left( i\gamma^\mu(\partial_\mu\delta_{ij} - i g_s G_\mu^a T^a_{ij}) - m_\psi \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a, where }} is the Dirac spinor of the quark field, where*i*= {r, g, b} represents color, }} are the Dirac matrices, }} is the 8-component (a = 1, 2, \dots, 8) SU(3) gauge field, }} are the 3 × 3 Gell-Mann matrices, generators of the SU(3) color group, }} are the field strength tensors for the gluons, is the strong coupling constant.#### Electroweak sector

The electroweak sector is a Yang–Mills gauge theory with the simple symmetry group U(1) × SU(2)L, \mathcal{L}_\text{EW} = \sum_\psi \bar\psi \gamma^\mu \left(i\partial_\mu - g' \tfrac12 Y_\text{W} B_\mu - g \tfrac12 \vec\tau_\text{L} \vec W_\mu\right)\psi - \tfrac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \tfrac{1}{4} B^{\mu\nu} B_{\mu\nu}, where is the U(1) gauge field, is the weak hypercharge – the generator of the U(1) group,*μ*}} is the 3-component SU(2) gauge field, }} are the Pauli matrices – infinitesimal generators of the SU(2) group – with subscript L to indicate that they only act on*left*-chiral fermions, and are the U(1) and SU(2) coupling constants respectively, W^{a\mu\nu} (a = 1, 2, 3) and B^{\mu\nu} are the field strength tensors for the weak isospin and weak hypercharge fields. Notice that the addition of fermion mass terms into the electroweak lagrangian is forbidden, since terms of the form m\overline\psi\psi do not respect U(1) × SU(2)L gauge invariance. Neither is it possible to add explicit mass terms for the U(1) and SU(2) gauge fields. The Higgs mechanism is responsible for the generation of the gauge boson masses, and the fermion masses result from Yukawa-type interactions with the Higgs field.#### Higgs sector

In the Standard Model, the Higgs field is a complex scalar of the group SU(2)L: \varphi = \frac{1}{\sqrt 2} \left(\begin{array}{c}\varphi^+ \\ \varphi^0\end{array}\right), where the superscripts + and 0 indicate the electric charge () of the components. The weak isospin () of both components is 1. Before symmetry breaking, the Higgs Lagrangian is \mathcal{L}_\text{H} = \varphi^\dagger \left(\partial^\mu - \frac{i}{2} \left( g'Y_\text{W} B^\mu + g \vec\tau \vec W^\mu \right)\right) \left(\partial_\mu + \frac{i}{2} \left( g'Y_\text{W} B_\mu + g \vec\tau \vec W_\mu \right)\right)\varphi - \frac{\lambda^2}{4} \left(\varphi^\dagger \varphi - v^2\right)^2, which can also be written as \mathcal{L}_\text{H} = \left|\left(\partial_\mu + \frac{i}{2} \left( g'Y_\text{W} B_\mu + g \vec\tau \vec W_\mu \right)\right)\varphi\right|^2 - \frac{\lambda^2}{4} \left(\varphi^\dagger \varphi - v^2\right)^2.#### Yukawa sector

The Yukawa interaction terms are \mathcal{L}_\text{Yukawa} = \overline U_L G_u U_R \phi^0 - \overline D_L G_u U_R \phi^- + \overline U_L G_d D_R \phi^+ + \overline D_L G_d D_R \phi^0 + hc, where are matrices of Yukawa couplings, with the term giving the coupling of the generations and .## Fundamental forces

The Standard Model describes three of the four fundamental forces in nature; only gravity remains unexplained. In the Standard Model, a force is described as an exchange of bosons between the objects affected, such as a photon for the electromagnetic force and a gluon for the strong interaction. Those particles are called force carriers or messenger particles.http://home.web.cern.ch/about/physics/standard-model Official CERN website## Tests and predictions

The Standard Model (SM) predicted the existence of the W and Z bosons, gluon, and the top and charm quarks before these particles were observed. Their predicted properties were experimentally confirmed with good precision. The SM also makes several predictions about the decay of Z0 bosons, which have been experimentally confirmed by the Large Electron-Positron Collider at CERN. In May 2012 BaBar Collaboration reported that their recently analyzed data may suggest possible flaws in the Standard Model of particle physics. While the level of certainty of the excess (3.4 sigma) is not enough to claim a break from the Standard Model, the results are a potential sign of something amiss and are likely to affect existing theories, including those attempting to deduce the properties of Higgs bosons. On December 13, 2012, physicists reported the constancy, over space and time, of a basic physical constant of nature that supports the*standard model of physics*. The scientists, studying methanol molecules in a distant galaxy, found the change (∆μ/μ) in the proton-to-electron mass ratio μ to be equal to "(0.0 ± 1.0) × 10−7 at redshift z = 0.89" and consistent with "a null result".## Challenges

Self-consistency of the Standard Model (currently formulated as a non-abelian gauge theory quantized through path-integrals) has not been mathematically proven. While regularized versions useful for approximate computations (for example lattice gauge theory) exist, it is not known whether they converge (in the sense of S-matrix elements) in the limit that the regulator is removed. A key question related to the consistency is the Yang–Mills existence and mass gap problem. Experiments indicate that neutrinos have mass, which the classic Standard Model did not allow. If one insists on using only Standard Model particles, this can be achieved by adding a non-renormalizable interaction of leptons with the Higgs boson. This is natural in the left-right symmetric extension of the Standard Model Theoretical and experimental research has attempted to extend the Standard Model into a Unified field theory or a Theory of everything, a complete theory explaining all physical phenomena including constants. Inadequacies of the Standard Model that motivate such research include:- The model does not explain gravitation, although physical confirmation of a theoretical particle known as a graviton would account for it to a degree. Though it addresses strong and electroweak interactions, the Standard Model does not consistently explain the canonical theory of gravitation, general relativity, in terms of quantum field theory. The reason for this is, among other things, that quantum field theories of gravity generally break down before reaching the Planck scale. As a consequence, we have no reliable theory for the very early universe.
- Some physicists consider it to be
*ad hoc*and inelegant, requiring 19 numerical constants whose values are unrelated and arbitrary.{{cite journal

- The Higgs mechanism gives rise to the hierarchy problem if some new physics (coupled to the Higgs) is present at high energy scales. In these cases, in order for the weak scale to be much smaller than the Planck scale, severe fine tuning of the parameters is required; there are, however, other scenarios that include quantum gravity in which such fine tuning can be avoided. There are also issues of Quantum triviality, which suggests that it may not be possible to create a consistent quantum field theory involving elementary scalar particles.
- The model is inconsistent with the emerging " Standard Model of cosmology". More common contentions include the absence of an explanation in the Standard Model of particle physics for the observed amount of cold dark matter (CDM) and its contributions to dark energy, which are many orders of magnitude too large. It is also difficult to accommodate the observed predominance of matter over antimatter ( matter/ antimatter asymmetry). The isotropy and homogeneity of the visible universe over large distances seems to require a mechanism like cosmic inflation, which would also constitute an extension of the Standard Model.
- The existence of ultra-high-energy cosmic rays are difficult to explain under the Standard Model.

## See also

- Fundamental interaction:
- * Quantum electrodynamics
- * Strong interaction: Color charge, Quantum chromodynamics, Quark model
- * Weak interaction: Electroweak theory, Fermi theory of beta decay, Weak hypercharge, Weak isospin
- Gauge theory: Nontechnical introduction to gauge theory
- Generation
- Higgs mechanism: Higgs boson, Higgsless model
- J. C. Ward
- J. J. Sakurai Prize for Theoretical Particle Physics
- Lagrangian
- Open questions: BTeV experiment, CP violation, Neutrino masses, Quark matter, Quantum triviality
- Penguin diagram
- Quantum field theory
- Standard Model: Mathematical formulation of, Physics beyond the Standard Model

## Notes and references

## References

## Further reading

- {{cite book

- {{cite book

- {{cite web

- {{cite book

- {{cite book

- {{cite book

- {{cite book

- {{cite book

- {{cite book

- {{cite book

- {{cite book

- Nagashima Y. Elementary Particle Physics: Foundations of the Standard Model, Volume 2. (Wiley 2013) 920 pages
- Schwartz, M.D. Quantum Field Theory and the Standard Model (Cambridge University Press 2013) 952 pages
- Langacker P. The standard model and beyond. (CRC Press, 2010) 670 pages. Highlights group-theoretical aspects of the Standard Model.

- {{cite journal

- {{cite journal

- {{cite journal

*p*→*νK*+ in a Large Water Cherenkov Detector |journal= Physical Review Letters |volume=83 |issue=8 |page=1529 |arxiv = hep-ex/9904020 |bibcode=1999PhRvL..83.1529H |doi=10.1103/PhysRevLett.83.1529 |display-authors=etal}}- {{cite arXiv

- {{cite arXiv

- {{cite journal

## External links

- " The Standard Model explained in Detail by CERN's John Ellis" omega tau podcast.
- " The Standard Model" The Standard Model on the CERN web site explains how the basic building blocks of matter interact, governed by four fundamental forces.
- Leonard Susskind: Particle Physics: Standard Model. Lecture Collections, Video Recordings, 2010.