On Air

Investment

Buy this Domain?
Do you interesting about this domain and the running project?
Feel free to send your offer to webmaster.
pay with Paypal

Advertising

Thermodynamics

showing the hot body (boiler), working body (system, steam), and cold body (water), the letters labeled according to the stopping points in Carnot cycle.]] Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the composition or specific properties of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering. Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scottish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854{{cite book |title=Mathematical and Physical Papers |author= William Thomson, LL.D. D.C.L., F.R.S. |location=London, Cambridge |year=1882 |volume=1 |page=232 |publisher=C.J. Clay, M.A. & Son, Cambridge University Press |url=https://books.google.com/books?id=nWMSAAAAIAAJ&pg=PA100&dq=On+an+Absolute+Thermometric+Scale+Founded+on+Carnot%E2%80%99s+Theory&ei=roDISOecOKayjAHajoXyCw#v=onepage&q=On%20an%20Absolute%20Thermometric%20Scale%20Founded%20on%20Carnot%E2%80%99s%20Theory&f=false }} which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency." The initial application of thermodynamics to mechanical heat engines was extended early on to the study of chemical compounds and chemical reactions. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and has provided the bulk of expansion and knowledge of the field.Gibbs, Willard, J. (1876). Transactions of the Connecticut Academy, III, pp. 108-248, Oct. 1875-May 1876, and pp. 343-524, May 1877-July 1878.Duhem, P.M.M. (1886). Le Potential Thermodynamique et ses Applications, Hermann, Paris.Guggenheim, E.A. (1933). Modern Thermodynamics by the Methods of J.W. Gibbs, Methuen, London.Guggenheim, E.A. (1949/1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, 1st edition 1949, 5th edition 1967, North-Holland, Amsterdam. American biophysicist Donald Haynie claims that thermodynamics was coined in 1840 from the Greek root therme, meaning heat and dynamis, meaning power.{{cite book |title=Biological Thermodynamics |edition=2 |author=Donald T. Haynie |publisher=Cambridge University Press |year=2008 |page=26 }} However, this etymology has been cited as unlikely. Pierre Perrot claims that the term thermodynamics was coined by James Joule in 1858 to designate the science of relations between heat and power, however, Joule never used that term, but used instead the term perfect thermo-dynamic engine in reference to Thomson’s 1849 phraseology. By 1858, thermo-dynamics, as a functional term, was used in William Thomson's paper "An Account of Carnot's Theory of the Motive Power of Heat."Kelvin, William T. (1849) "An Account of Carnot's Theory of the Motive Power of Heat - with Numerical Results Deduced from Regnault's Experiments on Steam." Transactions of the Edinburg Royal Society, XVI. January 2. Scanned Copy

Branches of thermodynamics

The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical or experimental basis, or applying the principles to varying types of systems.

Classical thermodynamics

Classical thermodynamics is the description of the states of thermodynamic systems at near-equilibrium, that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. The qualifier classical reflects the fact that it represents the first level of understanding of the subject as it developed in the 19th century and describes the changes of a system in terms of macroscopic empirical (large scale, and measurable) parameters. A microscopic interpretation of these concepts was later provided by the development of statistical mechanics.

Statistical mechanics

Statistical mechanics, also called statistical thermodynamics, emerged with the development of atomic and molecular theories in the late 19th century and early 20th century, and supplemented classical thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining classical thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.

Chemical thermodynamics

Chemical thermodynamics is the study of the interrelation of energy with chemical reactions or with a physical change of state within the confines of the laws of thermodynamics.

Treatment of equilibrium

Equilibrium thermodynamics is the systematic study of transformations of matter and energy in systems as they approach equilibrium. The word equilibrium implies a state of balance. In an equilibrium state there are no unbalanced potentials, or driving forces, within the system. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state, subject to accurately specified constraints, to calculate what the state of the system will be once it has reached equilibrium. Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.

Laws of thermodynamics

Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following:
  • Zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.
This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature. Thus, if one seeks to decide if two bodies are at the same temperature, it is not necessary to bring them into contact and measure any changes of their observable properties in time.Moran, Michael J. and Howard N. Shapiro, 2008. Fundamentals of Engineering Thermodynamics. 6th ed. Wiley and Sons: 16. The law provides an empirical definition of temperature and justification for the construction of practical thermometers. The zeroth law was not initially recognized as a law, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated prior and found common acceptance in the physics community. Once the importance of the zeroth law for the definition of temperature was realized, it was impracticable to renumber the other laws, hence it was numbered the zeroth law. The first law of thermodynamics is an expression of the principle of conservation of energy. It states that energy can be transformed (changed from one form to another), but cannot be created or destroyed. The first law is usually formulated by saying that the change in the internal energy of a closed thermodynamic system is equal to the difference between the heat supplied to the system and the amount of work done by the system on its surroundings. It is important to note that internal energy is a state of the system (see Thermodynamic state) whereas heat and work modify the state of the system. In other words, a change of internal energy of a system may be achieved by any combination of heat and work added or removed from the system as long as those total to the change of internal energy. The manner by which a system achieves its internal energy is path independent. The second law of thermodynamics is an expression of the universal principle of decay observable in nature. The second law is an observation of the fact that over time, differences in temperature, pressure, and chemical potential tend to even out in a physical system that is isolated from the outside world. Entropy is a measure of how much this process has progressed. The entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium. However, principles guiding systems that are far from equilibrium are still debatable. One of such principles is the maximum entropy production principle. It states that non-equilibrium systems behave such a way as to maximize its entropy production. In classical thermodynamics, the second law is a basic postulate applicable to any system involving heat energy transfer; in statistical thermodynamics, the second law is a consequence of the assumed randomness of molecular chaos. There are many versions of the second law, but they all have the same effect, which is to explain the phenomenon of irreversibility in nature.
  • Third law of thermodynamics: As a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value.
The third law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute reference point for the determination of entropy. The entropy determined relative to this point is the absolute entropy. Alternate definitions are, "the entropy of all systems and of all states of a system is smallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature by any finite number of processes". Absolute zero, at which all activity would stop if it were possible to happen, is −273.15 °C (degrees Celsius), or −459.67 °F (degrees Fahrenheit) or 0 K (kelvin).

System models

An important concept in thermodynamics is the thermodynamic system, which is a precisely defined region of the universe under study. Everything in the universe except the system is called the surroundings. A system is separated from the remainder of the universe by a boundary which may be a physical boundary or notional, but which by convention defines a finite volume. Exchanges of work, heat, or matter between the system and the surroundings take place across this boundary. In practice, the boundary of a system is simply an imaginary dotted line drawn around a volume within which is going to be a change in the internal energy of that volume. Anything that passes across the boundary that effects a change in the internal energy of the system needs to be accounted for in the energy balance equation. The volume can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a steam engine, such as Sadi Carnot defined in 1824; it can be the body of a tropical cyclone, such as Kerry Emanuel theorized in 1986 in the field of atmospheric thermodynamics; it could also be just one nuclide (i.e. a system of quarks) as hypothesized in quantum thermodynamics, or the event horizon of a black hole. Boundaries are of four types: fixed, movable, real, and imaginary. For example, in an engine, a fixed boundary means the piston is locked at its position, within which a constant volume process might occur. If the piston is allowed to move that boundary is movable while the cylinder and cylinder head boundaries are fixed. For closed systems, boundaries are real while for open systems boundaries are often imaginary. In the case of a jet engine, a fixed imaginary boundary might be assumed at the intake of the engine, fixed boundaries along the surface of the case and a second fixed imaginary boundary across the exhaust nozzle. Generally, thermodynamics distinguishes three classes of systems, defined in terms of what is allowed to cross their boundaries: As time passes in an isolated system, internal differences of pressures, densities, and temperatures tend to even out. A system in which all equalizing processes have gone to completion is said to be in a state of thermodynamic equilibrium. Once in thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than are systems which are not in equilibrium. Often, when analysing a dynamic thermodynamic process, the simplifying assumption is made that each intermediate state in the process is at equilibrium, producing thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state and are said to be reversible processes.

States and processes

When a system is at equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities that do not depend on the process by which the system arrived at its state. They are called intensive variables or extensive variables according to how they change when the size of the system changes. The properties of the system can be described by an equation of state which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant. A thermodynamic process may be defined as the energetic evolution of a thermodynamic system proceeding from an initial state to a final state. It can be described by process quantities. Typically, each thermodynamic process is distinguished from other processes in energetic character according to what parameters, such as temperature, pressure, or volume, etc., are held fixed. Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair. Several commonly studied thermodynamic processes are:

Instrumentation

There are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a thermodynamic system. In some cases, the thermodynamic parameter is actually defined in terms of an idealized measuring instrument. For example, the zeroth law states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This principle, as noted by James Maxwell in 1872, asserts that it is possible to measure temperature. An idealized thermometer is a sample of an ideal gas at constant pressure. From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature. A calorimeter is a device which is used to measure and define the internal energy of a system. A thermodynamic reservoir is a system which is so large that its state parameters are not appreciably altered when it is brought into contact with the system of interest. When the reservoir is brought into contact with the system, the system is brought into equilibrium with the reservoir. For example, a pressure reservoir is a system at a particular pressure, which imposes that pressure upon the system to which it is mechanically connected. The Earth's atmosphere is often used as a pressure reservoir. If ocean water is used to cool a power plant, the ocean is often a temperature reservoir in the analysis of the power plant cycle.

Conjugate variables

The central concept of thermodynamics is that of energy, the ability to do work. By the First Law, the total energy of a system and its surroundings is conserved. Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In mechanics, for example, energy transfer equals the product of the force applied to a body and the resulting displacement. Conjugate variables are pairs of thermodynamic concepts, with the first being akin to a "force" applied to some thermodynamic system, the second being akin to the resulting "displacement," and the product of the two equalling the amount of energy transferred. The common conjugate variables are:

Potentials

Thermodynamic potentials are different quantitative measures of the stored energy in a system. Potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. For example, the Helmholtz and Gibbs energies are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. The five most well known potentials are: where T is the temperature, S the entropy, p the pressure, V the volume, \mu the chemical potential, N the number of particles in the system, and i is the count of particles types in the system. Thermodynamic potentials can be derived from the energy balance equation applied to a thermodynamic system. Other thermodynamic potentials can also be obtained through Legendre transformation.

Applied fields

See also

Lists and timelines

Wikibooks

References

Further reading

  • A nontechnical introduction, good on historical and interpretive matters.
  • {{cite journal
| last = Kazakov | first = Andrei | title = Web Thermo Tables – an On-Line Version of the TRC Thermodynamic Tables | journal = Journal of Research of the National Institutes of Standards and Technology | volume = 113 | issue = 4 | pages = 209–220 | publisher = | location = | date = July–August 2008 | url = http://nvl-i.nist.gov/pub/nistpubs/jres/113/4/V113.N04.A03.pdf | issn = | doi = | id = | accessdate = }} The following titles are more technical:

External links

"green air" © 2007 - Ingo Malchow, Webdesign Neustrelitz
This article based upon the http://en.wikipedia.org/wiki/Thermodynamics, the free encyclopaedia Wikipedia and is licensed under the GNU Free Documentation License.
Further informations available on the list of authors and history: http://en.wikipedia.org/w/index.php?title=Thermodynamics&action=history
presented by: Ingo Malchow, Mirower Bogen 22, 17235 Neustrelitz, Germany